A negative feedback system between oocyte bone morphogenetic protein 15 and granulosa cell kit ligand: its role in regulating granulosa cell mitosis.
نویسندگان
چکیده
Although the existence of a regulatory paracrine feedback system between oocytes and follicular somatic cells has been postulated for some time, there has not yet been any definitive evidence that such a communication system exists. Herein we present a previously undescribed oocyte-granulosa cell (GC) feedback communication system involving an oocyte-derived factor, bone morphogenetic protein-15 (BMP-15) and a GC-derived factor, kit ligand (KL), both of which have been shown to be crucial regulators of female reproduction. We used a coculture system of rat oocytes and GCs and found that BMP-15 stimulates KL expression in GCs, whereas KL inhibits BMP-15 expression in oocytes, thus forming a negative feedback loop. Moreover, KL, like BMP-15, exhibited mitotic activity on GCs in the presence of oocytes. Because c-kit (KL receptor) is expressed in oocytes but not GCs, the oocytes must be involved in mediating the KL-induced GC mitosis. Furthermore, the blockage of c-kit signaling in oocytes by using a c-kit neutralizing antibody markedly suppressed BMP-15-induced GC mitosis, suggesting that the oocyte must play a role in the GC responses to BMP-15. In contrast, the c-kit antibody had no effect on the mitotic activities of two other known GC mitogens, activin-A and BMP-7. Altogether, this study presents direct evidence of a negative feedback system governed by oocyte-derived BMP-15 and GC-derived KL, and demonstrates that the mitotic activities of BMP-15 and KL for GCs depend on this oocyte-GC communication system. We hypothesize that the negative feedback system most likely plays a pivotal role in early folliculogenesis.
منابع مشابه
Oocyte-granulosa cell interactions during mouse follicular development: regulation of kit ligand expression and its role in oocyte growth
Ovarian folliculogenesis is regulated by both endocrine and intraovarian mechanisms that coordinate the processes of oocyte growth and somatic cell proliferation and differentiation. Within the follicle, paracrine interactions between the oocyte and surrounding granulosa cells are critical for normal cell development and function. This review focuses on the role of paracrine interactions during...
متن کاملControl of Mammalian Oocyte Development by Interactions with the Maternal Follicular Environment.
Development of animal germ cells depends critically on continuous contact and communication with the somatic compartment of the gonad. In females, each oocyte is enclosed within a follicle, whose somatic cells supply nutrients that sustain basal metabolic activity of the oocyte and send signals that regulate its differentiation. This maternal microenvironment thus plays an indispensable role in...
متن کاملOocyte peptides as paracrine tools for ovarian stimulation and oocyte maturation.
Recent studies report the production and isolation of a stable bioactive recombinant human bone morphogenetic protein 15 (rhBMP15) that is appropriately processed in HEK-293 cells and activates the SMAD 1/5/8 pathway in mouse granulosa cell cultures. Further, the purified rhBMP15 induces the expression of genes associated with cumulus expansion. Thanks to recent research, we have a greater unde...
متن کاملAn oocentric view of folliculogenesis and embryogenesis.
The mammalian oocyte undertakes a highly complex journey to maturity during which it successively acquires a series of characteristics necessary for fertilization and the development of a healthy embryo. While the contribution of granulosa cells to oocyte development has been studied for many years, it has recently become apparent that the oocyte itself plays a key role in directing its own fat...
متن کاملOocyte-derived BMP15 but not GDF9 down-regulates connexin43 expression and decreases gap junction intercellular communication activity in immortalized human granulosa cells.
In the ovary, connexin-coupled gap junctions in granulosa cells play crucial roles in follicular and oocyte development as well as in corpus luteum formation. Our previous work has shown that theca cell-derived bone morphogenetic protein (BMP)4 and BMP7 decrease gap junction intercellular communication (GJIC) activity via the down-regulation of connexin43 (Cx43) expression in immortalized human...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 12 شماره
صفحات -
تاریخ انتشار 2002